Human activity has been impacting the environment in negative ways. The greenhouse effect which produces climate change due to the trapping of the sunlight energy in the atmosphere is caused by having extra carbon dioxide in the atmosphere which is not removed by the photosynthetic processes of green plants. These extra carbon dioxide causes global warming. Climate change mitigation, or actions to reduce the magnitude and rate of global warming, along with climate change mitigation strategies, are now very popular. Several approaches have been proposed to remove these extra carbon dioxide or what is called carbon sequestration. Today, we will focus on a new innovation that not only promises to help the environment, but is commercially viable.
Scientists at the U.S Department of Energy’s (D.O.E) Argonne National Laboratory in collaboration with Northern Illinois University have undertaken research that have realized a way to not only remove carbon dioxide from the environment, but to also break it down and use it to manufacture ethanol.
The discovery involves using catalysts, specifically electrocatalysts under low voltage. A catalyst is a substance that increases the rate of a chemical reaction without undergoing in the reaction itself and electrocatalysts are types of catalysts that function at electrode surfaces or they may be the electrode themselves. The electrocatalyst that was used by the researchers was copper, or atomically dispersed copper on carbon-powdered supports. These copper was used to break down trapped carbon-dioxide and water molecules and then these molecules were selectively reassembled into ethanol under an external electric field. When the efficiency was measured, it was found that the electrocatalytic selectivity process was 90 percent efficient, much better than existing techniques for converting carbon dioxide to ethanol. Furthermore, over extended periods of time it was found to operate under stable conditions at low voltages. The researchers also say that the costs for the process is also reasonable.
So one may ask: why convert carbon dioxide and water to ethanol? This is because ethanol is widely used in the U.S. It is used to produce gasoline and it is the chemical for many personal care and household products. Also, industries need ethanol to manufacture a host of products that provide lots of benefits to other industries and humans.
This is not the first time though that carbon dioxide will be converted into ethanol. But this method is more efficient and more cost-effective. Furthermore, the researchers say it is more stable than other previous methods. According to Tao Xu, a professor in physical chemistry and nanotechnology from Northern Illinois University, this process would open the doors to technology that would convert carbon dioxide electrocatalytically not only to ethanol, but to a vast array of other industrial chemicals.
So what are the benefits of removing carbon dioxide from the environment? The benefits are immense. Reusing carbon dioxide to manufacture ethanol would provide raw materials for industries making use of this ethanol at a cheaper cost. It reduces the increase in global temperatures. Presently, the world is working to make sure global temperatures do not exceed the two degrees Celsius mark. This approach will contribute its share. Also, greenhouse gases are being removed from the environment, helping to slow down climate change. Greta Thunberg, the Swedish teenage climate activist, would be happy to promote this technique. Also, since this approach has an efficient and reasonable cost, it will confer a lot of benefit to fossil fuel industries and alcohol fermentation plants who emit a lot of carbon dioxide annually into the atmosphere. They could derive some revenue by converting that carbon dioxide into ethanol. Furthermore, lots of jobs and career options would be created in the process in the U.S and around the world if this efficient technique is implemented.
The research has become successful that the researchers are in collaborative talks with industries to start producing ethanol. According to Di-Jia Liu, a senior chemist at Argonne’s Chemical Science and Engineering division, and one of the authors, they have plans to collaborate with industries in order to advance the promising technology. There are also plans to produce several other catalysts.
Material for this post was taken from Argonne National Laboratory press release.
No comments:
Post a Comment
Your comments here!