Search

Python Sort and Sorted Functions Explained

Sorting in programming is very important. It can improve the efficiency of your code. For example, if you have to search for an item in a collection, the ability to sort the items beforehand reduces the computation that has to be done by the search algorithm, thereby increasing efficiency. That is why understanding how to sort is very important. Python provides two functions for sorting: the python sort and sorted functions. I will describe both functions in this post. Also, I will discuss their similarities and differences, and using examples show you how to use them effectively.

python sort and sorted functions

 

So, let’s start with the first method, the python sort method.

What is the python sort method?

This method is made only for the list data type. It sorts items in place and uses lexicographic order. The items in the list must be able to compare equal and if they do not the sorting fails and raises an exception. The list might be left unstable if this happens. The syntax for the python sort method is: sort(*, key=None, reverse=False). The keyword argument, key, refers to the comparison function that could be used for sorting and the default is None. The reverse argument could be switched between True and False to state whether the sorting should be done in ascending or descending order. The default is False i.e ascending order. The method returns None which means the list is sorted in place.

See this post for a refresher on how sorting using lexicographic order is done.

Let’s give examples of sorting that is done without specifying the key and reverse arguments. We will deal extensively with those two after the sorted function is explained.

The list above, items, has both strings and int values. Since strings and ints cannot compare equal for ‘<’ comparison, the code returns a TypeError. Note this please when sorting.

In the code above the list, items, is a list of numbers and on calling python list sort they are correctly sorted in ascending order, the default. Notice that the list, items, is sorted in place and returns None.

Now, let’s illustrate the second sorting function, the python sorted function.

What is the python sorted function?

The sorted function is a built in function that sorts any iterable in python. The syntax of the sorted function is: sorted(iterable, *, key=None, reverse=False). Unlike the python sort method which acts only on lists, the sorted function can accept lists, dictionaries, strings, tuples, sets etc. It accepts anything that is an iterable. The key and reverse arguments are the same as for sort method and they will be explained below. The python sorted function returns a sorted iterable.

Now for some examples using the same list, items, I used for the sort method.

Now let’s explore the differences and similarities between the two functions.

First, the difference between python sort and sorted functions.

The fundamental difference between both of them is that sort modifies the list in place, while sorted returns a new sorted iterable. So, if you want something that is optimized for lists, just use the python sort method and you are good to go. But if you want to sort an object that is not a list, then you have python sorted function at your convenience.

The similarities between python sort and sorted functions

The similarities between both functions are based on their keyword arguments: key and reverse. The key and reverse arguments for both functions work similarly and can be interchanged. These two keyword arguments give both functions their power so I will take time to explain each of them in turn.

The key argument in sort and sorted.

The key argument, when present, specifies how the comparison is to be done. The key argument is supposed to be a function that takes a single argument and returns a key for the python sort or sorted functions.

Most times when people have items that are lists of lists, they would want to sort based on one of the indices in the list. This is where the key function really comes in. Let’s take a list of tuples for example, of names and ages, and sort based on the ages. This will demonstrate how the key argument can be used. Please I used a list and the sorted function for the examples that come next. You can use any iterable of your choice and either sort or sorted; you will get the same results.

Notice that the youngest person now comes first, followed by the second youngest and then the next etc. So, we specified the key using a lambda function and that the key to use should be the index 1 for the items in the list and index 1 specifies the age. So, we’re sorting the python list based on its indices. Notice though that the list is not efficiently sorted. It was sorted by ages but the names for the same ages are out of order. We will come to that later.

See the following post if you want a refresher on lambda expressions as used in the code above.

Now a list is a built-in data type. Can we do the same sorting on custom objects we created? Yes, we can. Let’s take an example.

In the code above we created a Person class and all instances of Person have a name and age. Then in the driver code, from line 16, we created a list of Person instances and then sorted the list using a lambda expression with the age as the key. I want you to study this code very well and see that we could sort based on specific attributes of objects just as we did for native data types. It shows you the powerful capabilities of python as a language. We can even sort python objects of any type.

But the sorting is not yet efficient. The names are not in alphabetical order; just the same efficiency problem for the first sorted list. So let’s make the sorting efficient.

Please compare the output of the code below with that of the code above.

You will notice in the code above that it is now optimized. Initially, we were able to sort correctly for ages but when two Persons have the same age their names were not sorted. So, I added a little tweak to the lambda function so as to sort first for ages and then for names. I modified the statement in the lambda function to: key=lambda x : str(x.get_age())+x.get_name(). What the code says is to tell sorted to first sort by age with the key cast to a string to make it compare equal to name, and then after sorting by age, then sort by name.

It’s now elegant and more efficient, not so? It’s fun. That’s python programming.

Now we have been dealing with an iterable that has some order to it. What if we have a dictionary, an iterable, that has no order to it. How can we sort a dictionary by value or sort a dictionary by key in python?

First note that to sort a dictionary you only use the python sorted function. And by default it sorts the dictionaries by keys. For example, taking the key, value pairs of fruits below when we call the sorted function on it, it sorts the dictionary by the alphabetic order of the names of the fruits.

This is a well done sort of dictionary by keys. Notice that when I called sorted the iterable I used is fruits.items() instead of fruits. This is because I wanted to get a view into both the keys and values on the output. If I had used fruits only, then it would have given me a list of only the keys.

Compare this code and the code before it and see for yourself how the output using fruits as iterable is different from that using fruist.items().

So, what if I want to sort the dictionary by values in python. That is where using the key argument comes in. From the ordering of the view given by fruits.items(), which are tuples of (key,value) pairs, what I do is modify the lambda function to catch only the value which is the index 1 in each tuple. So, just study the below code.

What I modified in the code is to insert the expression for the key using a lambda expression and then make it refer to the value index in the tuple.

So, you now know how to sort a dictionary by key and how to sort a dictionary by value in python.

Now for the second keyword argument, the reverse argument.

The reverse argument for sort and sorted functions

The reverse argument has Boolean values. When the value is True, you are asking the sort or sorted function to arrange the outcomes in descending order. When it is False, the default, you are asking it to arrange them in ascending order. It’s as simple as that.

Now, for everything we use examples. So, let’s take examples. We’ll use our initial list of names and ages and sort by ages in ascending order and then descending order.

First, ascending order, the default, and later in descending order.

Notice that to change from ascending to descending order I only changed the reverse argument value from False to True. That’s it.

So, I believe you have all you need to do sorting in python. Experiment to your heart’s delight.

Happy pythoning.

Classes For Graphs and Directed Graphs In Python: Graph Theory

In computer science and mathematics, graphs are ubiquitous. They are just everywhere. We use graphs to solve a lot of problems that involve relationships. Since 1735 when the Swiss Mathematician, Leonhard Euler, used what we now know as graph theory to solve the Seven Bridges of Königsberg problem, graphs have become a brand name of sorts. That is why I decided to write a post on graphs and explore graphs in subsequent posts.

python graphs and directed graphs

 

What are graphs?

In simple terms, graphs are structures used to represent the relationship between objects (called vertices or nodes) where two objects (or nodes) have an edge connecting them if they are related. Diagrammatically, they are depicted with a set of dots or circles for the objects or nodes, and related objects are joined by lines called edges.

The graph below has 6 nodes or vertices, and 7 edges.


 

The edges of a graph may be directed or undirected.

I will be writing code for both directed and undirected graphs. What made me attracted to writing code on graphs was because they are used in every area of life. From scientists to businesses, graphs are used to model solutions to problems.

So, let’s start with writing classes for graphs and we will implement them.

First, we’ll create a class for a Node and an Edge.

A node is just an object in a graph. One attribute every object has is a Name. So, we’ll give our node a name attribute to start with. Here is the code for the Node class.

    
class Node(object):

    def __init__(self, name):
        ''' assumes name a string '''
        self.name = name

    def get_name(self):
        return self.name

    def __str__(self):
        return self.name

Every instance of a Node, as you can see from the code, has a name and each instance has a method, get_name, which you can use to retrieve the name.

An edge is a relation connector between objects. If two objects are connected to each other by a relationship, they will have an edge between them. Edges can be directed or non-directed. Let’s model the Edge class to start with.

    
class Edge(object):

    def __init__(self, src, dest):
        '''assume src and dest are nodes '''
        self.src = src
        self.dest = dest

    def get_source(self):
        return self.src

    def get_destination(self):
        return self.dest

    def __str__(self):
        return self.src.get_name() + '-->' + \
            self.dest.get_name()

From the code you can see that each instance of an Edge has a source node, self.src, and a destination node, self.dest. On creation of a node the source and destination nodes have to be passed as arguments to the constructor, __init__. Then I added a special method for representing an Edge as a string of source and destination nodes, __str__(). This would make for easy printing.

Now that we have the Node and Edge classes, let us go on to model the directed graphs and undirected graphs.

Directed graphs in Python code

A directed graph is a graph in which edges have orientations. The relationship in directed graphs goes one-sided and never both way. The edges are represented by arrows.

A simple class for a directed graph might be written in the following way:

    
class Digraph(object):
    # nodes is a list of the nodes in the graph
    # edges is a dict mapping each node to 
    # a list of its children 
    def __init__(self):
        self.nodes = []
        self.edges = {}

    def add_node(self, node):
        if node in self.nodes:
            raise ValueError('Duplicate Node')
        else:
            self.nodes.append(node)
            self.edges[node] = []

    def add_edge(self, edge):
        src = edge.get_source()
        dest = edge.get_destination()
        if not (src in self.nodes and dest in self.nodes):
            raise ValueError('Node not in graph')
        self.edges[src].append(dest)

    def children_of(self, node):
        return self.edges[node]

    def has_node(self, node):
        return node in self.nodes

    def __str__(self):
        result = ''
        for src in self.nodes:
            for dest in self.edges[src]:
                result = result + src.get_name() + \
                    '-->' + dest.get_name() + '\n'
        return result[:-1] # remove last newline

The class, Digraph, represents a class for objects of a directed graph. If you look at the constructor, we are representing all the nodes in the graph as a list, while the edges are represented by a mapping of nodes to child nodes which mapping goes only one way. Therefore, a dictionary data structure was used for this mapping. To have a graph, it needs nodes. To add a node, we use the method add_node that takes a node as its sole argument. To add a node, we need first to check if the node already exists in the list of nodes and if it does, the method raises a ValueError. If not, it then appends the node to the list of nodes in the graph and then creates a mapping for that node with its values as an empty list that would later be populated when edges are added. To add an edge to the graph, we use the add_edge method. We first initialize the source and destination nodes of the edge, and before adding the edge we check that the source and destination nodes are already in the list of nodes for the graph. If they are not in the list, we raise a ValueError exception. If no exception is raised, a directed edge is created with the source, src, mapped to its value, the destination node, dest. The class also has complementary methods, children_of, that would bring out a list of the nodes connected to that node as source, and also another method, has_node, that returns a Boolean value after evaluating whether the node in question is in the list of nodes for the graph.

That sums up our directed graph, Digraph, class. Now, let’s show that the code works. Let’s implement it by creating an instance of a directed graph, or Digraph. The Digraph instance I will be creating will be based on the directed graph below with 5 nodes and 6 edges. 

python directed graph

 

The only new code is the driver code that creates a Digraph instance. For the sake of brevity, I would recommend that you read the driver code starting from line 67 down to line 106. It is really an exciting code. I hope you appreciate it.

Now the question I asked myself is: why create a class for a graph and not just write code direct? This is because I would be reusing the code in the future. So, we will be coming back to this code for solving problems involving graphs in the future. Maybe you could bookmark this code for the Digraph class. You can download the file here, directed_graph.py.

Undirected graphs or simple graphs in Python code.

An undirected graph or graph for short is a connection between a pair of nodes using their edges. The edges can go both ways which distinguishes it from directed graphs that have orientations.

Now while writing the code for undirected graphs, I ran into a dilemma about inheritance. I was stuck between which graph should inherit from which. Should a directed graph inherit from a undirected graph or should it be vice versa? I decided that it was best for a graph to inherit from a directed graph. This was because instances of graphs can substitute for instances of digraphs and still add one more behavior by making the relationship go the other way. But instances of digraphs cannot stand as substitutes for instances of graphs; digraphs relationship goes only one way. Therefore, I decided to make digraph the superclass and graph the subclass.

Now, this is the code for the class graph.

    
class Graph(Digraph):

    def add_edge(self, edge):
        Digraph.add_edge(self, edge)
        rev = Edge(edge.get_destination(), edge.get_source())
        Digraph.add_edge(self, rev)                                            

Notice that the class, Graph, is inheriting from Digraph so it shares the same attributes with Digraph instances but it only overrides the add_edge method of Digraph. In the add_edge method of Graph I made it that the relationship can go both ways i.e every node in a relationship or edge is both a source and destination node for that edge.

So, for a little implementation that creates an instance of a Graph, I will be modeling the Graph pictured below:

python graph example

 

Run the code and notice the differences between this instance of a Graph and instances of a Digraph. The driver code that creates the Graph instances starts at line 73. You can alternatively download the code and run it on your own machine, graph.py script, so you can bookmark it.

I hope to see you in the future when we begin solving problems with graphs like the traveling salesman problem. To receive updates when I post new articles, just subscribe to my blog.

Happy pythoning.

How To Reverse String In Python: 3 Techniques

After writing the post on reversing lists in python, I got a good response that I decided it would also be fine if I approach a similar concept in python: how to reverse a string in python.

python reverse string

 

One thing that makes people find this subject difficult is because python does not have a string method that is specifically built for reversing strings just like we have for lists. If there was one, that would have made our task easier because it would be optimized. So you have to be creative in looking for ways to reverse python strings. In this post, I outline three methods you can reverse strings in python as well as their timing characteristics.

First, using the python slice technique

The python slice technique, as I explained in the post about reversing lists through slicing, involves taking a slice of a sequence (and strings are also sequences) through definite start, stop, and step parameters. The slice notation in python is [start: stop : step] where start is where you want to start the slice, stop is at the index you want to stop the slice and step is the steps you take through the index while iterating through the items in the string. To reverse a string using the python slice technique, you just need to use this code on the string: string_name[ : : -1].

What the code above does is to copy the string, string_name, from the beginning to the end backwards.

Here is an example so you can see it for yourself.

Nice and easy not so? This method does not change the original string. In fact, as you must know, strings are immutable.

This is the method I prefer for reversing python strings.

Second, using the built-in reversed function.

I explained the reversed function on the post for reversing lists. But one more explanation would be succinct here. The syntax for the reversed function is: reversed(seq). As you can see, the function takes any sequence and reverses it. A string is also a sequence as I explained on the iterables post. When the string is reversed the function returns an iterator. What you do here is cast the iterator to a string. I think that is what gives this function an overhead, the process of casting the iterator to a string, otherwise it is very good and fast. You use the str.join(iterable) method of the string class to cast the iterator to a string.

Here is code that shows how to use the function and also cast it to a string.

This method is very succinct and readable across all levels of python skill.

Third, using a for loop and storing the characters backwards.

With this method all you need to do is use a for loop to iterate through the characters in the string, then you store the characters backwards in a new string. Very convenient and easy to understand.

Here is the code:

I hope you found the code to be fun.

Now, the question most persons ask is: Which is faster or which uses less system memory?

Let’s answer that question by timing the execution of each of the string reverse techniques in python and decide on which is faster or more optimized.

Timing all three techniques.

Try running the following code:

When you run it you will notice that the python slice technique took considerably lesser time than all the others while the for loop took more time. That is why I use the slice technique to reverse my strings.

There was a time when someone told me that during an interview question the interviewer told him that the slice technique is not optimized for reversing strings. I laughed. I have not yet seen anything better than the python slice technique for reversing strings. For now it is the fastest of all the methods I know of and I have outlined the three useful I use here. I use the for loop when I am lazy and just want to be unpythonic.

So, thanks for reading. I believe that now you have techniques you can use to reverse your strings. Leave a comment below if you have any. Also, do not fail to subscribe to my blog so you can be receiving useful updates the moment I post new articles.

Happy pythoning.

Breakthrough 3D Printing Of Heart For Treating Aortic Stenosis

When a narrowed aortic valve fails to open properly and thereby the pumping of blood from the heart to the aorta is obstructed, this might result in a condition called aortic valve stenosis. Aortic stenosis is one of the most common cardiovascular conditions in the elderly and affects about 2.7 million adults over the age of 75 in North America. If the doctors decide that the condition is severe, they may carry out a minimally invasive heart procedure to replace the valve. This procedure is called transcatheter aortic valve replacement (TAVR). But this catheterization procedure is not without some risks which might include bleeding, stroke, heart attack or even death. That is why it is important that the doctors take all care to reduce the risks. The TAVR procedure is less invasive than open heart surgery to repair the damaged valves,

3D printing of heart

In a new paper published in Science Advances, a peer-reviewed scientific journal published by the American Association for the Advancement of Science (AAAS), some researchers from the University of Minnesota along with their collaborators have been able to produce a new technique that involves 3D printing of the aortic valve along with creating lifelike models of the aortic valve and surrounding structures which models mimic the look and feel of the valve. These 3D printing would possibly help reduce the risks for doctors who want to carry out a TAVR procedure on a patient.

Precisely, they 3D printed a model of the aortic root. The aortic root is a section of the aorta that is closest to the heart and attached to the heart. Some of the components of the aortic root include the aortic valve, which is prone to aortic stenosis in the elderly, along with the openings of the coronary artery. The left ventricle muscle and the ascending aorta which are close to the aortic root are also not left out in the model.

The models include specialized 3D printing soft sensor arrays built into the structure that prints the organs for each patient. The 3D printing process is also customized. The authors believe that this organ model will be used by doctors all over the world to improve the outcomes for patients who will be subject to invasive procedures when treating aortic stenosis.

Before the models are produced CT scans of the patient’s aortic root are made so that the printing will mimic the exact shape of the patient's organ. Then specialized silicone-based inks are used to do the actual printing in order to match the exact feel of the patient's heart. These inks were specially built for this process because commercial printers in the market can print 3D shapes but they cannot be able to reflect the real feel of the heart’s organs which are soft tissues. The initial heart tissue that were used for the test of the 3D printers were obtained from the University of Minnesota's Visible Heart Laboratory. The researchers found that the specialized 3D printers produced models that they wanted, models that mimic the shape and the feel of the aortic valve at the heart.

To watch a video of how the 3D printers work, I encourage you to play the video below. You would find it interesting.


The researchers are happy with what they have achieved.

“Our goal with these 3D-printed models is to reduce medical risks and complications by providing patient-specific tools to help doctors understand the exact anatomical structure and mechanical properties of the specific patient’s heart,” said Michael McAlpine, a University of Minnesota mechanical engineering professor and senior researcher on the study. “Physicians can test and try the valve implants before the actual procedure. The models can also help patients better understand their own anatomy and the procedure itself.”

These models will surely be of help to physicians who will use them to practice on how they will carry out their catheterization procedures on the real heart. Physicians will soon have the ability to practice beforehand on the size and placement of the catheter device on patients before carrying out the real procedure thereby reducing the risks involved. One good thing about the integrated sensors that are fitted into the 3D models is that they will provide physicians with electronic pressure feedback which will guide them in determining and selecting the optimal position of the catheter when being placed into the aorta of a patient.

But the researchers do not think these are the only use cases for their findings or the models. They aim to go beyond that.

“As our 3D-printing techniques continue to improve and we discover new ways to integrate electronics to mimic organ function, the models themselves may be used as artificial replacement organs,” said McAlpine, who holds the Kuhrmeyer Family Chair Professorship in the University of Minnesota Department of Mechanical Engineering. “Someday maybe these ‘bionic’ organs can be as good as or better than their biological counterparts.”

I think these are laudable futuristic goals. If they could achieve their ambition, then McAlpine would be solving a problem that gives sleepless nights to many physicians who have to operate on elderly patients with weak aortic valves.

Because this is a problem-solving innovative solution to a challenging problem, I decided to include it in my blog. I hope you enjoyed reading about the achievements of McAlpine and his colleagues. I wish that they go further than just helping physicians have 3D models but be able to make those models replace weak natural organs.

In addition to McAlpine, the team included University of Minnesota researchers Ghazaleh Haghiashtiani, co-first author and a recent mechanical engineering Ph.D. graduate who now works at Seagate; Kaiyan Qiu, another co-first author and a former mechanical engineering postdoctoral researcher who is now an assistant professor at Washington State University; Jorge D. Zhingre Sanchez, a former biomedical engineering Ph.D. student who worked in the University of Minnesota’s Visible Heart Laboratories who is now a senior R&D engineer at Medtronic; Zachary J. Fuenning, a mechanical engineering graduate student; Paul A. Iaizzo, a professor of surgery in the Medical School and founding director of the U of M Visible Heart Laboratories; Priya Nair, senior scientist at Medtronic; and Sarah E. Ahlberg, director of research & technology at Medtronic.

This research was funded by Medtronic, the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health, and the Minnesota Discovery, Research, and InnoVation Economy (MnDRIVE) Initiative through the State of Minnesota. Additional support was provided by University of Minnesota Interdisciplinary Doctoral Fellowship and Doctoral Dissertation Fellowship awarded to Ghazaleh Haghiashtiani.

You can read the full research paper, entitled "3D printed patient-specific aortic root models with internal sensors for minimally invasive applications," at the Science Advances website.

How To Reverse List In Python: 4 Techniques

Very often I get people asking me to write a post on how to reverse a list in python. This is because this question often comes up in interviews. So, to oblige them, I have decided to write on four good and tested ways you can reverse a list in python. I also show their timing so that you can choose the best for your needs.

 

python reverse list

The built-in python reversed function

The syntax of the built-in python reversed function is reversed(seq). You can see that it takes in any sequence as argument. Sequences are lists, strings, tuples etc. For a refresher on sequences, see my post on iterables. The function returns an iterator. Remember that an iterator is an object that has elements but in order to extract the elements you need to cast it to list or call the next method. Most times, you cast it to a list to get out the elements. But casting afterwards to a list for this method of reversing could be an overhead cost for the method although it is easy, and uses substantially less memory unless you are casting. This method is ideal for times when you are dealing with very large lists and just want to use the elements of the reversed list when needed rather than using all at once. In this instance, you would need to use a python for loop.

Let’s take an example:

You can see from the above that I had to cast the iterator from the python reversed function to a list to get out the results. That could be an overhead as we’ll see later.

The python slice technique

Slicing a sequence is one of the ubiquitous techniques you can find with python lists and sequences. The syntax of slicing is [start:stop:step] where start is the index you want to start the slice, stop is where you want to stop the slice and step is the steps you want to take when iterating through the list to create the slice. To reverse a list using the python slice technique, you just need to use this statement: list_name[::-1], which is a shorthand for saying copy the list and then walk through it backwards.

Here is an example:

The advantage of this technique is that it is adaptable for any sequence and not just for lists. Some people claim that it is not readable but I find that argument obscure. Slicing is common in python even for the beginner. The only disadvantage I see with the python slice technique is that it uses up memory if you have a large list. This is because to create the reversed list, it needs to copy the original list and then reverse it. This sequence takes up a large chunk of memory. But when you want the original list to remain unchanged, this technique is good and recommended.

The python list reverse method

The python list reverse method is a method of the list class. The syntax is list.reverse(). In my opinion, it seems to be the easiest since it is built for lists and seems to be the fastest so far. But we will consider that in the timing section below. Unlike in the built-in python reversed function, it does not create any overhead and unlike the slicing technique, it does not require large chunk of memory even when working with large lists. It is more optimized for reversing python lists.

The advantageous fact about it is that it reverses in place. But if you want to make use of the original list after reversing, then this technique is not for you.

Here is an example:

I usually use this technique whenever I am reversing lists but if I need the original, I use the slice technique. Just to make you know.

Reverse list programmatically by swapping items

Now the last method you can use is to reverse the list programmatically by swapping items in place. You can write your own code that iterates through the elements of the list and swaps the elements in place. Here is a sample code:

This code can run fast but is not optimized for large lists. It swaps the elements in place and modifies the original list. It is worse than all the python built-in methods.

Timing the methods.

Most times when we are dealing with large lists, we want something that works very fast and doesn’t use much memory. Although with the built-in timing functions in python we cannot calculate for memory usage, but we can find out how long it takes each of the techniques above to run. We will need to import the timeit module to do this.

Here is a sample code for all three built-in methods except the programmed reverse list swapping method. The swapping technique takes a longer time for large lists that is why it is excluded.

When you run the code above, you will see that the list reverse method takes the shortest time of all three methods. Overall, its running time is 12 times lesser than the reversed method. The reversed function took longer time because of the list casting overhead. If we had a for loop, it would have taken less time. The slicing technique comes second place. So, that is why I use the python list reverse method often when reversing lists.

The list reverse method works better because it has been optimized by the developers of python for lists. I believe they look to these things that is why it was made to be a method of the list class.

So, now you have the options you can choose from while reversing lists. Use any to your heart’s desire.

Happy pythoning.

Matched content